Divergence Free High Order Filter Methods for the Compressible MHD Equations

نویسندگان

  • H. C. Yee
  • Björn Sjögreen
چکیده

The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of Delta*B Numerical Error

An adaptive numerical dissipation control in a class of high order filter methods for compressible MHD equations is systematically discussed. The filter schemes consist of a divergence-free preserving high order spatial base scheme with a filter approach which can be divergence-free preserving depending on the type of filter operator being used, the method of applying the filter step, and the t...

متن کامل

Non-Linear Filtering and Limiting in High Order Methods for Ideal and Non-Ideal MHD

The adaptive nonlinear filtering and limiting in spatially high order schemes (Yee et al. J. Comput. Phys. 150, 199–238, (1999), Sjögreen and Yee, J. Scient. Comput. 20, 211–255, (2004)) for the compressible Euler and Navier–Stokes equations have been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations, (Sjögreen and Yee, (2003), Proceedings of the 16th AIAA/CFD co...

متن کامل

Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field

In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central dis...

متن کامل

Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations

Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work (Journal of Computational Physics 230 (2011) 48284847), second and third order ex...

متن کامل

Provably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics

The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003